Science policy

Let the Restoration Begin

President Obama promised in his inaugural address to “restore science to its rightful place” and “transform our schools and colleges and universities to meet the demands of a new age.” These were refreshing and uplifting words from a president after the long and dark night to which science and its findings had been relegated during the previous eight years.

But these words also represent no small task to the science-friendly president. A civil crisis of science illiteracy exists today in America, and Obama’s administration is now charged with undoing a generation of decline in science policy and education in the U.S.

With White House attacks on science behind us for now, science educators must take this opportunity to propose a number of specific goals to ensure and strengthen the politically unbiased use of science in education and policy making.

October 4, 1957, may not be a date that is important to most college students today, but what occurred on this day stunned many Americans at the time. When the Soviet Union launched Sputnik into orbit, all Americans immediately knew that the Soviet Union had silently crept ahead of us in the race to control space.

The American reaction to the 1957 Sputnik launch was much more than rhetoric. The following year Congress tripled the National Science Foundation (NSF) budget to $135 million, and over the next few years of the space race, NSF support reached $500 million. Congress also passed in 1958 the National Defense Education Act, providing funding and scholarships for students and educators interested in science and mathematics.

Not everyone was on board with the new scientific policies, however. During the Kennedy and Johnson administrations industries began mobilizing to defend themselves against new science-based regulations on chemicals, pollution and industrial safety, which threatened to impose large costs on them. After the 1973 Roe v. Wade decision, Christian conservatives also began to mobilize politically. Under Reagan’s leadership, the anti-intellectual, organized efforts to weaken science-based regulations and education only grew stronger.

Then, in the climate of the early 1990s Republican Congress, the Intelligent Design movement grew and flourished, acting through local and state school boards from Kansas to Dover, Pa., to undermine the teaching of evolution. With this foundation, President George W. Bush was able to declare his belief that “both sides should be given equal time” in high school science education.

We have thus seen over the last generation a disheartening trend in science education at the nucleus of our great scientific advancements. In today's education system we import our premier science students from countries like China, India and South Korea. Our secondary school students do not seem adequately trained or even interested in pursuing a rigorous undergraduate curriculum in science, engineering or mathematics. The brightest minds tend to pursue business, law or medicine.

In his inaugural speech, Obama reminded us of the rich and productive relationship between science and public policy that shaped both science education and policy in earlier generations. So far, he has supported his promises with the appointments of distinguished scientists to high-level positions in his administration and by his declaration to reverse the previous administration’s ban on federal funding of research on embryonic stem-cell lines.

Of course, restoring science to its rightful place in government will require more than promises and appointments; it will require sustained hard work.

The conservative coalition will continue to press the same anti-science agenda, constantly seeking lines of attack. And without inherently unbiased infrastructure in the use of science policy, any progress made by the Obama administration can be overturned as quickly as an executive order when next the political tides switch.

Our current crises are no less threatening than the launch of Sputnik was in 1957. Just as investment in science education and research a half-century ago met the Soviet challenge in the Cold War, so, too, can restoration of science education and research as a policy priority help us to meet the demands for cleaner energy, better health and technologically agile national defense on which our future depends.

We thus recommend some specific goals for the new administration, to strengthen the structural support for unbiased use of science in education and policy making:

  • Re-establish the nonpartisan Congressional Office of Technology Assessment, to evaluate science-based policy alternatives.
  • Provide educational institutions a generous budget from Congress to create attractive opportunities for our educators and aspiring students entering the science and engineering curriculum.
  • Renew the federal investment in science education to the level of the post-Sputnik years.
  • Ensure standards in K-12 science education in all 50 states to ensure the teaching of a fact-based curriculum without theistic considerations as central to modern biology.
  • Experiment with new solutions to chronic problems in our secondary schools, to invest in our next generation of young scientists.
  • Restore the importance of good science in the policy setting.

To safeguard the role of science in policy making, the next generation of citizens and science teachers must understand that absolute consensus rarely occurs in science and is not necessary as a basis for policy making. Only a science-literate public can see through such Orwellian discourse as the “junk science versus sound science” false dichotomy. Moreover, science education will help prepare the public for the inevitable controversies that will arise with future scientific advances, as new knowledge sometimes takes us to places where some of us do not wish to go.

The promise of embryonic stem-cell research to cure disease or, more controversially, create desirable physical characteristics, and the search for an energy future freer of carbon, with the uncertain economic implications that entails, attest to the continuing power of science to thrust new issues onto our policy agenda.

The new leadership can and must define science’s role in developing and implementing public policy, and students at all levels of education must be provided with incentives and encouraged to study science to meet, in the president’s words, “the demands of a new age.” They must learn that decision making must be analytical and fact-based in policy-making and that the consequent choices we make remain with us as part of a sometimes messy, always fascinating political process. Let the restoration of U.S. science policy and education begin so that scientific research may be again considered, as it was in our country a half-century ago, the most noble and fruitful of human activities.

Joseph Karlesky and Richard Pepino
Author's email:

Joseph Karlesky is Kunkel Professor of Government, Richard Pepino is director of the Public Policy Program, and James Strick is associate professor of Earth and environment, all at Franklin & Marshall College.

Science as Public Service

Our nation has a long history of creating problem-solving partnerships between government and our research and development enterprise. Indeed, greater support for innovation is an important part of President Obama's strategy for economic growth and international competitiveness.

The largest and most prolific research and development partnerships have often involved our national security, with foundations in the military. In recent decades, this kind of collaboration has grown in support of emerging fields, like alternative energy and biomedical science. But as the threats to our nation evolve, partnerships between government, academe and industry need to move beyond areas where collaboration already is strong. A deeper, broader partnership on homeland security must be one of these areas.

The United States is no longer isolated by two oceans. And a technological revolution has made societies more interconnected than anyone thought possible. At the same time, small groups of people can exploit technology to injure and kill on a much broader scale than ever before. Indeed, the creation of the Department of Homeland Security was a response to these new-generation challenges – ones made so painfully clear on September 11th, 2001.

Today, our nation is more secure than it was before DHS was founded. And in the last two years, we have made considerable progress strengthening our defenses against terrorism, and forging new partnerships at home and overseas to protect our shared systems of trade, travel, and communication. We have improved our emergency preparedness and response capabilities, and enhanced the resilience of our communities and critical infrastructure.

Despite this progress, however, we have a ways to go to thoroughly integrate our nation’s homeland security functions and capabilities. And to do that, we need the best that science can offer. Here are three areas, in particular, that stand out:

Greater Aviation Security and Awareness

The United States has the largest aviation industry in the world, processing some 2 million passengers through 450 airports every day. We know that terrorists have repeatedly sought to use airplanes as a means to take innocent lives, and we know they continue to alter their tactics.

We therefore need to both address the current threats, and also employ technology and innovation to help us leap ahead of future threats. Better explosives detection is important, but, in fact, is just one layer of security in a multi-layered system that includes multiple tactics, both seen and unseen.

The heart of the challenge is to use technology to make travel and trade as secure and smooth as possible for passengers and for cargo. Technologies therefore have to be effective, but also fast, complementary to one another, and as non-intrusive as possible. And, of course, they must support our commitment to protect the privacy, civil rights, and civil liberties of our citizens.

Our goal is to create "the airport checkpoint of tomorrow" that reduces the need for physical searches and maximizes the likelihood that we will prevent another attack on aviation. But to imagine, design, test, procure, and – eventually – deploy this, we need new kinds of managerial, operational, and engineering expertise.

The 'Big Data' Challenge

A second homeland security challenge is likely familiar to many academics: research brings in reams of data, but what is essential is the ability to glean insight, and discern patterns and trends, from a mass of information. How, for example, can we improve our ability to identify the anomalies that could point to illicit or terrorist activity from millions – billions – of data points?

To the airline passengers we screen, add the data on more than 50,000 cargo containers arriving each day through hundreds of air, land, and sea ports. And add to this sea of "Big Data" the terabytes of information pouring in to the intelligence community about threats from abroad – more data each day than the entire text holdings of the Library of Congress.

Pulling actionable intelligence from this data requires the constant evolution of our information gathering, learning, and analytic capabilities. It requires software engineers, information systems designers, and communications and data security experts working together. It requires getting this right so that we can ensure that analysts, agents, screeners, and officers anywhere in the world can get the information they need securely, and in real time.

Securing Our Cyber Networks and Critical Infrastructure

Protecting our shared cyber networks and critical infrastructure also requires strong scientific and engineering partnerships. In the past couple years, we have hardened critical facilities, such as chemical plants and transportation hubs, and greatly improved our ability to detect and respond to a large-scale cyber attack. But we know there's more to be done.

For instance, making sure the industrial control systems that run our water treatment and power plants are safe from attack. Or finding ways to ensure that the distributed nature of cyberspace becomes a contributor to the resilience of the system, not a liability. Indeed, the multiplicity of disasters that recently hit Japan – an earthquake, a tsunami, and a nuclear crisis – illustrates vividly why resilience is so very basic, and so important.

Ninety percent of Americans live in an area where there is a moderate or high risk of natural disaster. We know we can do more to make homes and buildings more secure and resilient. We can speed the commercialization of innovations in the field of nanotechnology that can help put more resilient building materials on the market. Our scientific community can play a direct role in developing security solutions in these and other areas.

How Scientists Can Serve the Public at DHS

Since I became homeland security secretary, we have taken several significant steps. We recently issued a solicitation for research through our Science and Technology Directorate that creates incentives for academe and the private sector to propose novel ideas and approaches.

We are supporting the president’s commitment to strengthen education in the STEM fields by granting nearly 100 fellowships, scholarships, and internships to students in science, technology, engineering, and math every year. We just announced a new Loaned Executive program to bring private sector expertise into our leadership ranks on 6- to 12-month rotations, and we’re launching a new Cyber Workforce Initiative to help attract and then retain the very top cyber professionals available in the country.

I believe there are many scientists and engineers interested in working on scientific issues for the public benefit who, perhaps, have never considered the idea of government service. Maybe their impression is that technical career paths in government are not as appealing as they are in academe or the private sector.

Yet it’s not unusual for a lawyer, economist, or political scientist to spend some time working on a particular policy issue at a government agency. We therefore need to do a better job at making a similarly worthwhile and workable path for top scientists to serve the public interest, and to help make our nation more secure. In essence, we need a model where there is more scientific knowledge across government, and more knowledge of government and public policy in science and engineering communities.

We have tremendous scientific resources in this country. We lead the world in scientific and technological innovation. We must, therefore, engage our best scientific talent in support of our common security. By doing so, we can build on past success, amplify our current efforts, and greatly accelerate our future progress toward a more secure and resilient America.

Janet Napolitano
Author's email:

Janet Napolitano is U.S. Homeland Security Secretary. This essay is based on her Compton Lecture at the Massachusetts Institute of Technology, delivered on March 14, 2011. View or read the complete lecture.

Guidance on Stem Cells

Smart Title: 
The National Academies issued guidelines for scientists conducting the research.

Microsoft's Academic Agenda

Smart Title: 

Over the last 18 months, Microsoft has shifted its support for academic research to involve more universities and more kinds of studies. The shifts come at a time that Bill Gates, the company's founder, has become increasingly concerned about declines in support for key research agencies and declining student interest in computer science.

Anti-Military Occupation at U. of Hawaii

Smart Title: 
Protesters have taken over the president's office at U. of Hawaii, objecting to plans for a new research deal with the Navy.

Animal Rights and 'Eco-Terrorism'

Smart Title: 

Perhaps only in the superheated atmosphere of the current conflict over the U.S. Senate's confirmation of judges could a hearing about illegal bombings and arson by animal rights groups turn into a partisan affair.

A Bigger Role for Uncle Sam?

Smart Title: 
At a Senate session on preparing workers, college and company leaders weigh a stronger federal role in higher education.

House Endorses Expanded U.S. Research on Stem Cells

Smart Title: 
The vote defies Bush, but margin is insufficient to withstand a promised veto.

Congress Acts on Budgets for Humanities and Science Programs

Smart Title: 
House committee backs increases for NSF and NASA; Senate panel sets level funds for NEH and NEA.

'Science Under Siege'

Smart Title: 

Throughout the Bush administration, the president's policies have been criticized by many scientists. On Tuesday, the American Civil Liberties Union issued a new and harsh analysis of those policies.


Subscribe to RSS - Science policy
Back to Top