Sciences/Tech/Engineering/Math

Fall From Grace

Smart Title: 
After months of tension, tenured religion professor -- who wrote about challenges science poses to literal reading of Genesis -- leaves Calvin College.

'Global Warming and Political Intimidation'

Smart Title: 

In the late 1990s, Raymond Bradley, a climatologist at the University of Massachusetts at Amherst, collaborated with two researchers on a pair of studies that altered the dialogue on climate change. The studies, a collaboration between Bradley, a geophysicist named Michael Mann (then finishing up his Ph.D. at Yale University) and University of Arizona climatologist Malcolm Hughes, presented evidence of global climate change over the past millennium and set off a political firestorm.

New Breed of Vet School?

Smart Title: 
Lincoln Memorial plans to enter field with very few institutions, and to offer six-year bachelor's/D.V.M. option.

Getting Started in a Lab

Category: 
New graduate students need to ask the right questions to pick the best place to work and launch their careers, writes Tom Daniel.

Rules for Science Job Talks

Lynda F. Delph offers advice on a crucial test for job candidates.

Tips for Proposal Writers

A scientist, fresh from work on a review panel, offers advice.

Picking a Postdoc Post

Douglas Natelson suggests approaches in the physical sciences.

Is It Time to Shut Down Engineering Colleges?

With the return of students to campuses this month comes annual hand wringing over the lack of diversity in our science and engineering classes. The United States is at a 14-year low in the percentage of women (16.3 percent) and African Americans (7.1 percent) enrolling in engineering programs.

An engineering student body that is composed largely of white males is problematic not only because of its narrow design perspective, but also because failing to recruit from large segments of the population means the number of new engineers we produce falls well short of our potential.

Although this is not a new problem, it is becoming ever more urgent. We are faced with an engineering juggernaut emanating from India and China, with more than 10 Asian engineers graduating for every one in the United States. Educated at great institutions like the Indian Institutes of Technology or Tshingua University, these engineers are every bit as technically competent as their American counterparts.

So here we sit at the beginning of the 21st century, in the most technologically advanced nation on the planet, with a comparatively small supply of home grown engineers, facing an explosion of technical mental horsepower overseas.

Why fight the tide? Couldn’t we simply import all the engineering we need? Couldn’t we play the economic advantage and close our expensive colleges of engineering? Do we gain anything by educating engineers in the United States?

I would argue that, with a few exceptions, we really don’t. As they are currently trained, American engineers are at relative parity with their foreign-born counterparts, are more expensive, and offer no competitive advantage. But there is a way out of this predicament, one that would provide a raison d’etre for American engineering programs, and make for the kind of design the planet now so urgently needs.

Faced with the increasingly complex design challenges of the 21st century -- an era where resources of every kind are reaching their limit, human populations are exploding, and global-warming related environmental catastrophe beckons -- engineers need to grow beyond their traditional roles as problem-solvers to become problem-definers.

To catalyze this shift, our engineering curriculum, now packed with technical courses, needs a fresh start. Today’s engineers must be educated to think broadly in fundamental and integrative ways about the basic tenets of engineering. If we define engineering as the application of math and science in service to humanity, these tenets must include study of the human condition, the human experience, the human record.  

How do we make room in the crowded undergraduate engineering curriculum for students to explore disciplines outside math and science – literature and economics, history and music, philosophy and languages – that are vital if we are to create a competitive new generation of engineering leaders? By scaling back the number of increasingly narrow, and quickly outmoded technical courses students are now required to take -- leaving only those that teach them to think like engineers and to gain knowledge to solve problems. Students need to have room to in their schedules for wide ranging elective study.

There is a need for advanced engineering training, to be sure, but the place for that is at the graduate level -- in one of the growing number of nine-month masters programs, perhaps.

Teaching engineers to think, in the broadest, cross-disciplinary sense, is critical. Consider two examples of the failures of the old way.

The breach of the levees in New Orleans, which has unleashed a torrent of human suffering, came about not solely because engineers designed for a category 3, rather than a category 4, hurricane. It was caused by decades of engineering and technical hubris, which resulted in loss of wetlands and overbuilding on a grand scale. Would engineers who had studied economics, ecology, anthropology, or history have acted the same?

Or consider Love Canal (or any of a thousand other environmental debacles of the last 50 years). Would designers who had read Thoreau’s Walden, studied Beethoven’s Pastoral Symphony, or admired Monet’s poppies have allowed toxic chemicals to be dumped into the environment so remorselessly?

To prepare our engineers to engage in the major policy decisions we’ll face over the next 25 years -- many of which hinge heavily on the implications of technological design -- we must truly rethink what they need to know when they graduate.

If we do, our progeny stand a fighting chance of having a life worth living. And by giving engineering a larger, more socially relevant framework, expanding it beyond the narrow world of algorithms, the field should prove more attractive to women, minorities, and other underrepresented groups.

Just imagine. A growing and increasingly diverse number of domestically trained engineers -- equipped with the broad insight and critical thinking skills the world needs, which will also give them a competitive advantage over their foreign counterparts.

Overhauling the engineering curriculum would be challenging to be sure, but it’s a design worth building.  

Author/s: 
Domenico Grasso
Author's email: 
info@insidehighered.com

Domenico Grasso is dean of engineering and mathematical sciences at the University of Vermont. He was the founding director of the Picker Engineering Program at Smith College and is vice chair of the U.S. Environmental Protection Agency Science Advisory Board.

Why We Need the SMART Program

For the first 20 years of my adult life I served on research universities’ faculties, worked with medical students, and wrote peer-reviewed papers. As a medical doctor, a scientist, and a professor, I had enormous pride in the strength of America’s scientific establishment. The United States trains the world’s best scientists, runs the best research universities, and attracts the brightest minds from all over the world. Year after year, we take the lion’s share of Nobel Prizes.

I proposed the SMART Grant Program to make sure that we retain our global leadership in the sciences. The program will provide grants up to $4,000 on top of Pell Grants (a total of $8,050 in assistance per year) to help bright, hard-working, full time students of modest means pursue degrees in math, science, and strategic foreign languages. Between now and 2010, the Congressional Budget Office estimates that almost 600,000 students will benefit from the program. These students, I am sure, will go on to teach at our leading research universities, run our top medical research labs, and administer our national science establishment. For them, the program will help a lot: at most land grant universities, in-state students receiving the maximum Pell Grant and a SMART Grant will pay no tuition for their last two years of college. Much of the money to finance SMART Grants comes from revisions to student loan formulas that ask private banks to accept reduced profits.

The SMART Grant program will also help America’s research universities retain their global preeminence. Today, India and China together graduate more than twice as many engineers as the United States. Both nations will continue to increase their ranks of scientists and engineers rapidly in the coming years. Meanwhile, many American employers have a difficult time finding qualified scientists and engineers. Since 85 percent of growth in U.S. income comes from technological change, we need to do everything we can to encourage our best and brightest to enter key scientific fields.

I designed the program with the needs of students and research universities in mind. College presidents, families, and students told me that financial pressures turned many bright students away from pursuing math, science, engineering, and languages. Friends of mine like James Wingate, the president of LeMoyne-OwenCollege, and Gordon Gee, chancellor of Vanderbilt University, knew about the program from its origins and joined me in praising SMART Grants after the Senate passed the legislation.

I know that some college officials have expressed doubts about the way the program shifts away from the traditional practice of awarding federal aid to undergraduates based primarily on economic need rather than merit. But while I believe that the federal government should provide generous financial assistance to students with a wide range of abilities, I see no reason to apologize for creating a program targeted towards the very type of bright, motivated students nearly all colleges seek to recruit. I’m shocked that some of SMART Grants’ critics appear to believe that low-income students can’t earn good grades. While they use the same financial eligibility criteria, the SMART and Pell Grant programs will remain distinct; one won’t impact the other. The program also limits itself to full time students because they pay the most tuition and have the greatest financial need. Although fiscal considerations will play a role in future action, I am open to proposals that would expand SMART Grants to cover needy part-time students who meet similar academic criteria.

I helped create SMART Grants to help bright students from all backgrounds to learn the skills most vital to our country. The future of our nation’s global leadership depends on America’s ability to produce more graduates with degrees in science and engineering. Once they understand it, I believe that America’s great colleges and universities will welcome the SMART Grant program with open arms.

Author/s: 
Bill Frist
Author's email: 
info@insidehighered.com

Sen. Bill Frist, a former assistant professor of surgery at Vanderbilt University Medical School, is majority leader of the United States Senate.

It's Time to End 'Physics for Poets'

At the small liberal arts college where I teach, we have recently undertaken a wholesale revision of our core liberal arts curriculum. This is the set of requirements -- some specific courses, some chosen from a range of options -- that all students at the college must take before graduation. For professors in the natural sciences, this revision has required a good deal of thought about the content and nature of science courses offered to a non-major audience.

Conventional wisdom -- usually unquestioned -- has it that there are three basic elements that go into making up a good non-majors science course. First, the class should cover a relatively narrow range of topics. The classic "Physics for Poets" survey class, which attempts to cover an entire field in one semester, is almost always a disaster, satisfying neither the students taking it nor those teaching it. It's better to restrict the course to a subset of a given field, and spend more time covering a smaller range of topics.

Second, the topic chosen as the focus of the course should be something relatively modern. Students respond much more positively when they can immediately see the relevance of the material. Ideally, a good non-major science class should deal with either a "hot topic" in current research, or something connected to an ongoing public policy debate. It's much easier to engage the students in a subject if they're likely to read about it in The New York Times.

The third element is perhaps the most important: the course should involve the minimum possible amount of math. Many of the students who are the target audience for these classes are uncomfortable with mathematical reasoning, and react badly when asked to manipulate and interpret equations. This final characteristic is also the main reason why I am profoundly ambivalent about such classes.

Science for non-majors offers an important chance to reach out to students outside the sciences, and try to give them some appreciation for scientific inquiry. This is critically important, as we live in a time where science itself is under political assault from both the left and right. People with political agendas are constantly peddling distorted views of science, from conspiracy theories regarding pharmaceutical companies and drug development, to industry-backed attempts to challenge the scientific findings regarding global climate change, to the well-documented attempts to force religion into science curricula under the guise of "intelligent design." It's more important than ever for our students to be able to understand and critically evaluate competing claims about science.

I worry, however, that our approach to teaching science as a part of a liberal education is undermining the goals we have set for our classes. Despite the effort we put into providing classes that are both relevant and informative, I am troubled by the subtext of these classes. By their very existence, these classes send two damaging messages to students in other disciplines: first, that science is something alien and difficult, the exclusive province of nerds and geeks; and second, that we will happily accommodate their distaste for science and mathematics, by providing them with special classes that minimize the difficult aspects of the subject.

The first of these messages is sadly misguided. Science is more than just a collection of difficult facts to be learned. It's a way of looking at the universe, a systematic approach to studying the world around us, and understanding how things work. As such, it's as fundamental a part of human civilization as anything to be found in art or literature. The skills needed to do science are the same skills needed to excel in most other fields: careful observation, critical thinking, and an ability to support arguments with evidence.

The second subtext, however, is disturbingly accurate. We do make special accommodations for students who are uncomfortable with science, and particularly mathematics. We offer special classes that teach science with a minimum of math, and we offer math classes at a level below what ought to be expected of college students. Admissions officers and student tour guides go out of their way to reassure prospective students that they won't be expected to complete rigorous major-level science classes, but will be provided with options more to their liking.

It's difficult to imagine similar accommodations being made for students uncomfortable with other disciplines. The expectations for student ability in the humanities are much higher than in the sciences. If a student announced that he or she was not comfortable with reading and analyzing literary texts, we would question whether that student belonged in college at all (and rightly so). We take the existence of "Physics for Poets" for granted, but nobody would consider advocating a "Poetry for Physicists" class for science majors who are uncomfortable with reading and analyzing literature.

The disparity in expectations goes well beyond simple literacy. I was absolutely stunned to hear a colleague suggest, to many approving nods, that all first-year students should be required to read The Theory Toolbox. We would never consider asking all entering students to read H. M. Schey's Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, even though the critical theory described in The Theory Toolbox is every bit as much a specialized tool for literary analysis as vector calculus is a specialized tool for scientific analysis. Yet faculty members in the humanities can seriously propose one as essential for all students in all disciplines, while recoiling from the other.

This distaste for and fear of mathematics extends beyond the student body, into the faculty, and our society as a whole. Richard Cohen, writing in The Washington Post, wrote a column in February in which he dismissed algebra as unimportant, and proclaimed his own innumeracy.

"I confess to be one of those people who hate math. I can do my basic arithmetic all right (although not percentages) but I flunked algebra (once), barely passed it the second time -- the only proof I've ever seen of divine intervention -- somehow passed geometry and resolved, with a grateful exhale of breath, that I would never go near math again."

It's a sad commentary on the state of our society that a public intellectual (even a low-level one like Cohen) can write such a paragraph and be confident that it will be met with as many nods of agreement as howls of derision. If a scientist or mathematician were to say "I can handle simple declarative sentences all right (although not transitive verbs)," they could never expect to be taken seriously again. Illiteracy among the general public is viewed as a crisis, but innumeracy is largely ignored, because everybody knows that Math is Hard.

Fundamentally, this problem begins well below the college level, with the sorry state of science and math teaching in our middle schools and high schools. The ultimate solution will need to involve a large-scale reform of math and science teaching, from the early grades all the way through college. As college professors, though, we can begin the process by demanding a little more of our students, and not being quite so quick to accommodate gaps in their knowledge of math and science. We should recognize that mathematical and scientific literacy are every bit as important for an educated citizen as knowledge of history and literature, and insist that our students meet high standards in all areas of knowledge.

Of course, the science faculties are not without responsibilities in this situation. Forcing non-science majors to take the same courses as science majors seems like an unappealing prospect in large part because so many introductory science courses are unappealing. If we are to force non-science majors to take introductory science major courses, we will also need to commit to making those courses more acceptable to a broader range of students. One good start is the teaching initiative being promoted by Carl Wieman, a Nobel laureate in physics Carl Wieman who is leaving the University of Colorado to pursue educational reforms at the University of British Columbia, but more effort is needed. If we improve the quality of introductory science teaching and push for greater rigor in the science classes offered to non-majors, we should see benefits well outside the sciences, extending to society as a whole.

As academics, we are constantly asked to look below the surface to the implications of our actions. We are told that we need to consider the hidden messages sent by who we hire, what we assign, how we speak to students, and even what we wear. Shouldn't we also consider the hidden message sent by the classes we offer, and what they say about our educational priorities?

Author/s: 
Edward Morley
Author's email: 
info@insidehighered.com

Edward Morley is the psuedonym of an assistant professor of physics.

Pages

Subscribe to RSS - Sciences/Tech/Engineering/Math
Back to Top